

Towards a green and transformative public procurement in the European Union: the case of electric cars

Madeleine Péron et Raphaël Wainstain

Institut Veblen, november 2025

Table of contents

Executive Summary	02
Acknowledgements	03
Méthodology	03
Is Public Procurement a powerful Industrial Policy Tool?	04
Characteristics of European Public Procurement	05
The Multilateral Trade Framework	05
US protectionism vs UE liberalism	06
The EU Moves Toward More Strategic Public Procurement	06
What can Public Procurement do for the EU Automotive Industry?	09
Challenges in the Automotive Sector	09
What Role Can Public Procurement Play in Electrifying the European Fleet?	12
Demanding Environmental and Social Criteria	12
Leveraging Public Procurement to Drive the Automotive Transition	16
Raising Electrification Targets for Public Fleets to 100% of Renewals, Backed by Environmental and Social Criteria	16
Aligning All Public Instruments with Sufficiency and Industrial Reorientation Criteria	17
Expanding Social Leasing	17
European strategic purchasing platform to rethink methods and scale up	18
Conclusion	22
References	23

The Veblen Institute for Economic Reforms is a non-profit think tank that advocates for public policies and civil society initiatives supporting the ecological transition. It seeks to transform the current, deeply unsustainable economic model with a commitment to social justice and respect for planetary boundaries.

Authors:

Madeleine Péron, Head of the 'Ecological and Social Transition & Industrial Policy' programme Raphaël Wainstain, Assistant to the 'Ecological and Social Transition & Industrial Policy' programme

Contact: peron@veblen-institute.org

Executive Summary

The European Union is striving to balance competitiveness, strategic autonomy and quick decarbonisation. To achieve this, regulations and economic tools - which include trade policy, State aid and support for innovation - are part of an interventionist approach that remains ill-defined. Public procurement markets, which account for almost 15% of EU GDP, appear to be a potential strategic tool for aligning European industry with social, environmental and economic objectives. Its strategic use exposes tensions between industrial objectives and the logic of public procurement, calling for clearer articulation and coordination between them.

This brief illustrates how this can be achieved through the emblematic case of the automotive sector. Public procurement can act as a catalyst for the transition if used to:

- Make sustainability a central pillar of European industrial policy;
- Treat the 2035 deadline for phasing out internal combustion engines as a key milestone for meeting climate goals, by supporting the adaptation and transformation of Europe's automotive industry;
- Strengthen Europe's strategic autonomy in the face of resource scarcity, by placing sufficiency and circularity at the core of industrial strategies.

Public procurement alone cannot rescue the European automotive industry, as it represents only a small share of total demand. Yet its scale — around 200,000 vehicles per year, by our estimates — is sufficient to anchor targeted investments in lightweight, efficient vehicles designed for everyday use. This could break the current deadlock: an industry producing oversized, resource-heavy electric vehicles that remain unaffordable for most.

We recommend leveraging European public procurement while avoiding pitfalls. Therefore, we propose:

- 100% electrification targets for public fleet renewals.
- Strict environmental criteria for public vehicle purchases, including:
 - A minimum carbon footprint, assessed via a harmonised EU eco-score.
 - Maximum material recyclability (steel, batteries, plastics).
 - Compact designs (from Light Intermediate Vehicles to B-segment), with right-sized batteries and minimal embedded tech to reduce rare resource dependency and costs.
- A "Made in EU" content requirement to support transitioning factories and ensure optimal use of public funds.

To amplify impact and ensure policy coherence, these criteria must be extended to all electric vehicle incentives policies. This requires:

- Aligning all public tools (purchase subsidies, taxation, private-sector mandates) with these standards.
- Linking social leasing schemes to vehicles meeting the same material and energy sufficiency and industrial reorientation criteria.

To achieve this goal, we recommend launching a European platform for the joint procurement and supply of light, efficient, EU-made electric vehicles. Public demand should be the driving force behind the initiative, delivering clear and tangible social benefits. The platform would:

- Pool EU public procurement and open it to major buyers (leasing firms, corporations), standardising processes and cutting costs by up to 30%.
- Provide manufacturers with long-term market visibility, stimulating targeted investments;
- Establish inclusive governance involving automakers, suppliers, governments, businesses, unions, civil society, and users, ensuring transparency and alignment with the public interest.

Acknowledgements

This study has benefited from the expertise of numerous specialists whom we consulted. We extend our sincere gratitude for their invaluable insights, with special thanks to Bernard Jullien for his unwavering support throughout the project. While these enriching discussions have informed our findings and recommendations, the views expressed in this study remain those of the authors alone.

We also wish to thank the Veblen Institute team and the members of the associated expert panel for their thorough and careful reviews.

This report has been supported by the European Climate Foundation. Responsibility for the information and views set out in this note lie with the authors. The European Climate Foundation cannot be held responsible for any use which may be made of the information contained or expressed therein

Methodology

This report adopts a mixed-methods approach, combining quantitative and qualitative analysis. Beyond reviewing existing literature, we conducted fifteen in-depth interviews with experts from academia, French and European government agencies, think tanks, NGOs, and the automotive and battery sectors.

Regarding the quantitative component, we analysed data from EV Volumes to evaluate the supply-demand balance in the electric vehicle market. This comprehensive database tracks global EV sales, including manufacturing locations and battery sourcing information. The detailed geographic and segment-level data enabled us to estimate current EU production capacities that could be rapidly reoriented toward the most compact and lightweight vehicle models.

Our analysis also drew on official records of public vehicle procurement in France, Germany, and—where data permitted—Italy. Due to limited availability of comparable data from other Member States, we used these national figures as a basis for extrapolating overall European public sector demand.

Is Public Procurement a powerful Industrial Policy Tool?

Characteristics of European Public Procurement

Each year, over 250,000 public authorities across the European Union allocate nearly 15% of the EU's GDP—equivalent to more than €2 trillion—to the purchase of goods, services, and maintenance, ranking public procurement as major player in key sectors such as energy, transport, waste management, healthcare and education. Public markets are regulated by core principles that include transparency, open access, and fair treatment of bidders.

Public procurement refers to the processes through which public authorities—central governments, local authorities, and some public service operators—acquire goods, services, or maintenance from businesses. EU law establishes harmonised minimum rules for public contracts, which are transposed into national legislation and apply to contracts exceeding specific value thresholds. For contracts below these thresholds, national rules apply, though they must still comply with general EU legal principles.

Despite this harmonisation and these fundamental principles, procurement rules vary depending on contract values, subject matter, and derogation regimes. This heterogeneity complicates the use of public procurement as an EU-wide economic policy tool. So far, it has been little aligned with the Union's strategic objectives—namely, strategic autonomy, competitiveness, and green transition.

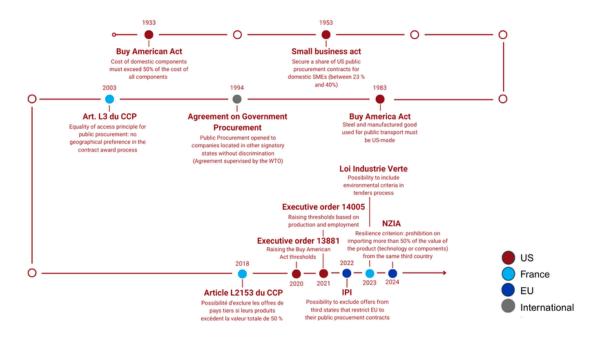
A significant, though changing, share of public procurement involves products imported from outside the EU. While imports account for only 9% of public purchases on average (Desrieux and Parra-Ramirez, 2021), their share rises substantially for manufactured goods (Grjebine and Héricourt, 2023). In 2014, imports averaged 19% of public procurement for manufactured goods in the United States, compared to 45% in Germany and 68% in France—even higher than the imports share in household consumption. The authors estimate that aligning the import share in public procurement with the household consumption one could have generated \$8 billion extra revenue for the French manufacturing sector.

Currently, environmental and social criteria are mostly absent from EU public procurement: nearly 60% of public contracts are awarded based solely on the lowest price. However, in some Member States, such as France, public procurement is already being used as a strategic tool to pursue additional objectives (see Box 1 on the Green Industry Law). Over 90% of French public contracts incorporate criteria beyond price, although cost often remains the most decisive factor (European Commission, 2024b).

Box 1: France's green industry law allows to expand non-price criteria in public procurement

France's Law No. 2023-973 of 23 October 2023 on the Green Industry aims to accelerate the country's reindustrialisation while enhancing its decarbonisation targets. This law appears partly as a response to the U.S. Inflation Reduction Act of 2022.

One of the four main components is the greening of public procurement. This latter introduces measures such as the exclusion from public contracts of companies failing to comply with greenhouse gas (GHG) emissions reporting obligations or sustainability disclosure requirements. The law formally integrates the possibility of including "qualitative, environmental, or social criteria" in contract awards into the Public Procurement Code. It also mandates that public buyers set targets for responsible purchasing—incorporating social and environmental considerations—through Schemes for the Promotion of Socially and Ecologically Responsible Purchasing (SPASER).


While the law avoids explicit geographic criteria for production, it enhances opportunities for local and national actors to access public contracts by considering factors such as carbon footprint reduction through proximity and local employment. The effects of this law will need to be closely monitored, despite the fact tha, to our knowledge, no studies or databases currently exist to assess its economic, environmental, and social impacts.

The Multilateral Trade Framework

Public procurement is also regulated by international rules. The Agreement on Government Procurement (GPA), negotiated under the World Trade Organisation (WTO) in 1994 and revised in 2012 with 22 signatories^[1], enforces principles of non-discrimination, transparency, and fairness. Some politically sensitive sectors such as energy and security are excluded. In 2022, markets open to international competition accounted for 15% of public procurement in the United States compared to 21% in the EU.

^[1] China is not part of.

TOWARDS MORE AND MORE STRATEGIC TENDERS

US protectionism vs UE liberalism

Since its 1933 Buy American Act, the United-States has developed a long tradition of industry protection, which has undergone several revisions and was recently strengthened under Trump and then during Joe Biden's presidency. The United States set high requirements for domestic content, with penalties for non-compliance, averaging 55% of costs and up to 95% for steel and iron. In 2021, Joe Biden shifted from "Buy American" to "Made in America" by signing Executive Order 14005, which strengthens the use of public procurement to support American production. Domestic content is now assessed based on production location and employment, with thresholds of 60% in 2022, 65% in 2024, and 75% in 2029.

The UE has prioritized a more liberal approach and has for a long time focused its efforts on opening third-country public markets, particularly through bilateral trade negotiations, rather than protecting its own markets. This reflects a vision where public markets are seen as opportunities for European exporting companies (i.e., those considered the most competitive). The only protective instruments the International Procurement Instrument (IPI) (Regulation EU 2022/1031) established in 2022. It allows restricting access to foreign companies from countries that do not offer equivalent openness. China is the main target of this instrument.

The EU Moves Toward More Strategic Public Procurement

In recent years, the EU has strengthened its protective tools with the IPI (2022/1031) and the Regulation (EU) 2022/2560 on foreign subsidies distorting the internal market, allowing the exclusion of bids suspected of distorting competition. The Net-Zero Industry Act (NZIA, 2024/1735) introduces non-economic criteria in public tenders, allowing the non-selection of the cheapest bid if another bid better contributes to environmental sustainability and supply chain resilience. Article 19(2) of the NZIA specifies cumulative criteria, such as environmental performance exceeding minimum standards, a solid implementation plan, better energy integration, or a reduction in dependence on a single source (over 65% supply).

A more strategic use of European public markets seems consensual. This orientation is indeed reinforced by recent reports from Enrico Letta (2024) on the single market and Mario Draghi (2024) on the future of European competitiveness. The reports recognized public procurement as a crucial mechanism for promoting European priorities and underscored the obstacles to its optimal implementation. The European Economic and Social Committee (EESC), in its opinion on the potential of public procurement for social economy enterprises, also advocates for a revision of the directives, recognizing the role of public procurement in achieving the EU's objectives in terms of social innovation, cohesion, and ecological transition.

In her Political Guidelines 2024-2029, President Ursula von der Leyen announced a review of existing directives to allow, for strategic sectors, a preference for European products, to ensure community added value and supply security in vital technologies, products, and services, and finally to simplify rules. The Clean Industrial Deal, presented in February 2025, also defines public procurement as a strategic tool. It particularly includes a proposal for a regulation by the end of 2025, the Industrial (Decarbonisation) Accelerator Act, which aims to introduce non-price criteria ("resilience" or local content, sustainability, circularity, and cybersecurity) for public purchases concerning energy-intensive sectors (steel, chemicals, construction, etc.). During her State of the Union address on September 10, 2025, Ursula von der Leyen reaffirmed the European Commission's intention to integrate a "Made in EU" criterion into public procurement.

In fact, the European Commission has already launched an in-depth assessment of the three directives that regulate public procurement in the EU—the Directive 2014/23/EU on concessions, the Directive 2014/24/EU on public procurement, and the Directive 2014/25/EU on so-called "special" sectors—examining their effectiveness, efficiency, relevance, coherence, and European added value.

Public procurement, however, is no panacea. It can deliver economic benefits (stimulating demand, enhancing reputations, and setting an example) but its strategic use may also be costly for public finances, due to reduced competitive pressure, the risk of regulatory capture, or increased costs arising from a mismatch between supply and demand (see Box 3)^[2]. The strategic use of public procurement is therefore likely to involve complex economic trade-offs and require inventive solutions.

Public vehicles purchase clearly illustrates the trade-offs involved in public procurement: pulling these purchases toward locally produced, sober, electric vehicles (EVs) can support the national or European automotive industry, enhance the state's exemplarity, and accelerate technological transitions. It is a way to guarantee markets for manufacturers, especially within still low-margin segments (electric utilities, small light vehicles), and to anchor skills locally. But this assumes the availability of an adapted industrial supply; otherwise, public procurement risks either massive imports or overpaying for poorly performing vehicles. An effective strategy therefore involves combining ambitious environmental criteria, incentives for local innovation, and social or fiscal conditionality (local production, employment, tax payment in Europe). Hence, public procurement requires rigorous governance, appropriate tools, and clear criteria to make it a democratic, effective, and sustainable lever; if not, industrial support objectives could be misdirected or ineffective.

^[2] trade-offs are not specific to the greening of public procurement and concern other strategic areas such as digital technology. See Guillou et al (2024) on this subject.

Box 2: Public Procurement as an Economic Policy Tool – Advantages and pitfalls

Public procurement can serve as an instrument of economic policy, which can be used to support local activity, shape industrial sectors or strengthen sovereignty. It operates through four key levers:

- **1. Flexibility in Award Criteria** Public entities have discretion in selecting award criteria, which may include environmental, social, or production location factors. This enables public procurement to guide economic activity and align state spending with broader public interest targets.
- **2. Demand Stimulation** By directly injecting funds into the economy, public procurement generates a Keynesian demand-stimulus effect. However, this impact depends on the supply ability to respond. If local production is insufficient, the effect may be partially captured by imports, underscoring the need for a responsive local industrial base.
- **3. Reputation and Exemplarity Effects** Awarding a public contract signals quality, acting as a mark of trust—particularly valuable for SMEs. Public procurement also exerts a demonstration effect, influencing the behavior of other consumers.
- **4. Economic Sovereignty Strengthening** By supporting domestic supply in tenders or acting as a buyer of last resort, public procurement can contribute to supply chain resilience and strategic sector control (mobility, healthcare, defense, etc.).

Limitations to consider:

- 1. Reduced Competitive Pressure Strategic use of public procurement may diminish competitiveness, potentially leading to relaxed standards on price or quality. Empirical evidence suggests that reduced competition raises prices by approximately 5–10% depending on the sector (Guillou et al., 2024). The European Court of Auditors' 2023 special report on EU public procurement highlights a decline in competition within public markets (European Court of Auditors, 2023a).
- **2. Regulatory Capture and Private Interests** There is a risk of regulatory capture, where interest groups heavily influence rules and criteria to secure competitive advantages. Additional concerns include corruption, favoritism, illegal conflicts of interest, and misappropriation of public funds.
- **3. Legal Compliance** From an international perspective, the strategic use of public procurement must be carefully calibrated to avoid conflicts with WTO principles and international trade agreements. While compatibility with these frameworks remains a cornerstone of EU economic diplomacy, the evolving geopolitical context has already prompted shifts in EU practice and may justify revisiting certain rules in this area.

What can Public Procurement do for the EU Automotive Industry?

Challenges in the Automotive Sector

If public procurement is to be used strategically, it must target specific objectives and sectors. One of the key industrial sectors at the European level is the automotive one. Playing a key role in the UE economy, it accounts for circa **2.5 million industrial jobs** throughout many Member States. It also represents major environmental concerns, as the transport sector remains at **25% of the EU's emissions**, half of these coming from light individual vehicles (EEA, 2024).

From an ecological perspective, reducing the number of vehicles, travel needs, and promoting alternative transport methods must remain absolute priorities, as these are the most effective ways to decrease the environmental impact of transportation. However, in most transition scenarios, individual travel remains dominant. Consequently, **mass electrification and** widespread use of light vehicles remain key variables in the equation.

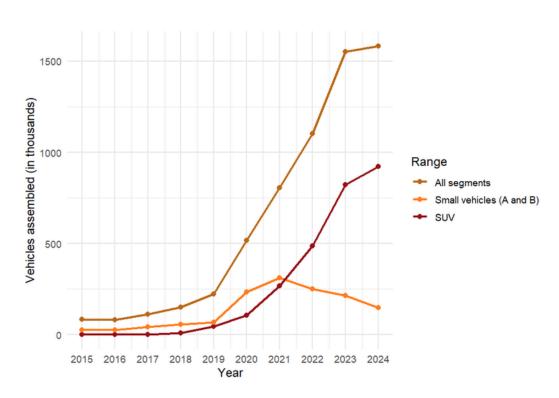
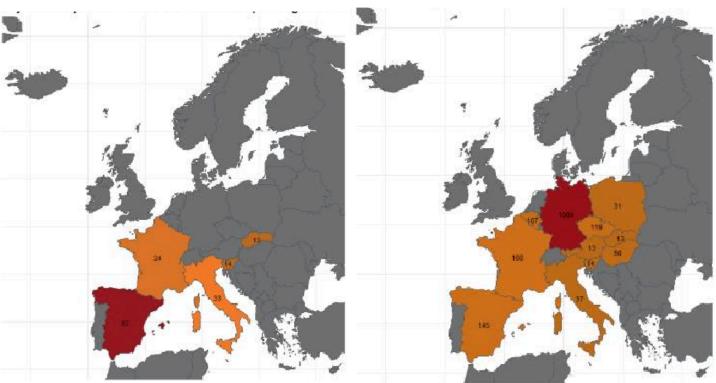


Figure 1: Production of electric vehicles in the EU 27

Source : Authors' calculations from EV Volumes data

Electric car's CO2 emissions are between two and three times less important than its combustion equivalent^[3] and remains the most effective solution for decarbonizing individual transport (Carbone 4, 2025; Philibert, 2024). However, over the past decade, these vehicles have undergone significant upscaling in price, weight, and resource consumption, making EVs unaffordable to middle-class households — lower-income households being excluded from the new car market a long time ago— and reducing their ecological performance. In 2023, the average electric car sold in Europe cost €67,000 and weighed 2,076 kg (compared to 1,250 kg in 2010), which is €35,000 more expensive and 700 kg heavier than its Chinese equivalent (Allochet et al., 2025). Production has followed the same trend, with SUVs—both small and large—now dominating European EV manufacturing (see Figure 1).


[1] This observation applies to the French mix, but also holds true for other European countries, to a lesser extent depending on their electricity mix. Furthermore, the estimates are based on fairly short lifespans, given that the carbon impact of an electric vehicle is mainly during its manufacture (a long lifespan 'offsets' this impact), whereas for a combustion engine vehicle, the opposite is true: it is its use that emits the most.

Meanwhile, small vehicles, which are far better suited to leading the ecological transition, have been sidelined: only five models of small cars under 1,100 kg were introduced by European manufacturers between 2020 and 2025, compared to 70 between 2000 and 2010. This situation can be explained by at least two factors: first, a marketing strategy by manufacturers, for whom high-end vehicles offer better profit margins per unit, even if sales volumes decline; and second, poorly designed European environmental regulations, which until the end of 2024 set a maximum CO_2 emission target per kilometer based on vehicle weight, incentivizing manufacturers to produce heavier vehicles (95 g CO_2 /km + 4.5 g CO_2 /km per additional 100 kg) (GERPISA, 2025).

Figure 2: Location of electric vehicle production in the EU in 2024

Segment A and B electric vehicles (in thousands)

All segments electric vehicles (in thousands)

Source: Authors' calculations from EV Volumes data

^[3] This observation applies to the French mix, but also holds true for other European countries, to a lesser extent depending on their electricity mix. Furthermore, the estimates are based on fairly short lifespans, given that the carbon impact of an electric vehicle is mainly during its manufacture (a long lifespan 'offsets' this impact), whereas for a combustion engine vehicle, the opposite is true: it is its use that emits the most.

This transition model is reaching its social, economic, and ecological limits. Production of A and B segment electric cars (the smallest and lightest vehicles) fell from around 310,000 in 2021 to less than 150,000 in 2024, representing only 9% of the 1.7 million battery EVs assembled in Europe (EV Volumes). Out of the eleven European countries producing EVs, only five have production lines dedicated to small vehicles (see Figure 2). Sales have plummeted (-20% between 2019 and 2024), factories are underutilized, and models are overcapacity.

In parallel, Europe struggles to develop a domestic battery industry, despite its massive need as input for the EVs sector (see Box 3). Nearly all batteries installed in EVs sold in Europe are imported. In France, automotive industry employment has declined by 7–8% over the past five years, partly due to factory relocations to Eastern Europe, which has not been spared either. This "premium electric vehicle" policy has also made French policies supporting EV purchases particularly costly and politically unsustainable, as they effectively subsidize purchases by the wealthiest households.

Beyond its purchase price, the electric car is more cost saving during its lifetime. Its total cost of ownership is generally much lower than that of a combustion vehicle, thanks to the lower cost of electricity compared to gasoline or diesel (€500 for home charging vs. €1,700 for fuel over 15,000 km^[4]) and reduced maintenance costs. This is especially true for light vehicles. For public buyers, this means substantial long-term savings, especially for vehicle fleets used intensively. Yet this economic advantage is often overlooked in tenders, which prioritize the initial purchase price over the total cost of ownership.

A consensus is therefore emerging among mobility stakeholders, ecological transition experts, and even automotive industry specialists on the need to develop small, lightweight, and affordable EVs (segment A, B under €20,000, micro-cars, and light intermediate vehicles—Vélis). This is essential for both environmental and economic reasons, as it represents a category where some historical European manufacturers have a real opportunity to show up compete against China (FNH, 2024; Allochet et al., 2025; Pardi et al., 2025).

Box 3. Europe's Battery Industry Is Struggling

Battery production issues are crucial for vehicles manufactured in Europe to reducing dependence on China. In 2023, the EU imported €27 billion worth of batteries, with nearly 90% coming from China (ACEA, 2025a). Since the bankruptcy of Swedish manufacturer Northvolt, Europe now has only three players in this sector: the Franco-German Automotive Cells Company (managed by Mercedes, Stellantis, and TotalEnergies), the French Verkor, and the German Powerco, affiliated with Volkswagen, with a total capacity of around 70 GWh in 2022 compared to 650 GWh in China (European Court of Auditors, 2023b). The gap with China is substantial, and manufacturers estimate that at least a decade will be needed to establish a self-sufficient and thriving European industry. To ensure the emergence and consolidation of such a sector—deemed strategic by the European Union—, a genuine industrial policy that combines investment support, subsidies, manufacturer obligations, and customs protections will undoubtedly be required.

^[4] According to Carbon 4 estimates, updated in June 2025

What Role Can Public Procurement Play in Electrifying the European Fleet?

To assess the potential role of public procurement, we must first understand the volumes it represents annually among overall demand. Data about public procurement share withing the light mobility sector are quite limited. However, available evidence suggests its impact to be relatively modest. France and Germany (which together account for nearly 45% of EU registrations in 2023) are the only countries where data on annual public fleet renewals is accessible. In these countries, vehicles purchased by public entities represented 2.5% of registrations in 2023—42,700 in France and 22,000 in Germany (Ministère de la Transition Écologique, 2023; KBA, 2023). When extended to the entire EU, it translates to an estimated 200,000 public vehicles out of the 10.6 million registered in 2023 (ACEA, 2024b). More precisely and according to T&E (2023), 32% of vehicles registered by French authorities in 2023 were electric.

While these volumes represent a relatively small share of total demand, its level is similar to the current production of small EVs in the EU (segments A and B—see Figure 1). Consequently, public procurement could support the deployment of this still-marginal sector by securing an annual demand of 200,000 vehicles across the 27 Member States, optimized for specific uses and meeting environmental requirements (lightweight, compact, sustainable—see below).

Furthermore, we have observed that production of the smallest vehicles (segments A and B) has been declining since 2021, when it peaked at around 310,000 units per year. Assuming that at least some of this production capacity still exists and that these lines are now underutilized, public purchases could help secure part of the investments already made before encouraging manufacturers to shift further toward smaller vehicles to continue reorienting production. Additionally, as we will discuss later, the creation of shared vehicle fleets and the ability of public authorities to aggregate private demand are promising avenues for steering the supply toward more sustainable vehicles.

Demanding Environmental and Social Criteria

From an industrial policy perspective aimed at ecological transition, public procurement can only be a strategic lever if it is first based on robust environmental criteria. The strength of public procurement lies in its ability to impose mandatory criteria. These must be clear and demanding: minimal carbon footprint and maximum circularity above all. The discussion on locality criteria follows, to ensure that public contracts support a lightweight, Europe-based, and sustainable automotive industry. Public funds would thus be directed toward strengthening the European economy and its resilience, rather than increasing imports and external dependencies—though the feasibility of such criteria remains to be discussed.

Spreading out Environmental Score Based on the French Eco-Score

Establishing an environmental score for new EVs purchased by governments across Europe would help steer the automotive industry toward lighter, more sustainable vehicles. In France, such an eco-score has existed since 2024 for private buyers, conditioning access to purchase bonuses of up to 27% of the vehicle's price (see Box 4). This score is based on the GHG emissions embedded in the vehicle's components, from production (ferrous metals, aluminium, other materials, batteries, assembly) to delivery^[5].

The methodology behind this eco-score is widely recognized for its robustness, particularly in capturing the duality between ferrous metals and aluminium—a critical point, as manufacturers tend to favour aluminium, which, while lighter, is two to four times more carbon-intensive than steel.

However, despite its effectiveness and ease of deployment, this tool has some limitations. On one hand, it does not explicitly include vehicle weight, and thus does not actively encourage material sufficiency or the production of lighter vehicles. On the other hand, it does not encompass vehicle repairability, variations in the carbon intensity of European energy mixes, or other material sufficiency aspects, such as the use of critical materials (which varies significantly depending on battery chemistry) or the environmental impact of embedded digital systems, whose electronic components are highly emissions-intensive.

Incorporating weight and energy mix criteria would allow for a more accurate assessment of the real environmental impact of EVs. At the European level, such a system would send a clear signal to manufacturers: electrification alone is no longer enough—material sufficiency must become central. By introducing this eco-score as an award criterion in public tenders, public buyers could favor resource-efficient models, thereby accelerating the transition toward decarbonized and sustainable mobility while stimulating industrial innovation in this direction.

Box 4. The French Eco-score

French Eco-score advantage lies within its straightforward implementation, enabled by a methodological choice that avoids the complexities of life cycle assessment (LCA). First, there is no standardised method for conducting LCAs of EVs; then, LCA requires significant data availability that is often difficult to obtain for EVs. Finally, the tools data are relying on (Sphera, GaBi) are not highly reliable. Hence, experts from ADEME (who co-developed the tool with the French Ministry of Economy and Finance) opted for a carbon footprint calculation based exclusively on primary data accessible to manufacturers (aluminium mass, ferrous materials, transport distance, battery capacity, assembly site, etc.), as well as national average emission factors. The output obtained is a good environmental performance estimator of vehicles, sensitive to within a hundred kgCO₂.

Some assumptions, however, remain quite limiting but could be corrected. For example, to avoid tracing transnational material flows, it is assumed materials extraction place is the same as the vehicle assembly one, whereas many manufacturers rely on imports. Another major limitation is to not differentiate energy mix between European states, even though carbon content varies depending on whether energy-intensive operations are carried out in Poland or France.

From this eco-score, the French administration subsequently set an eligibility threshold of an environmental bonus for new vehicle purchases since 2023. Being a political choice, this threshold implicitly (but not permanently) disadvantages models built in China, whether they are Chinese brands or historical European manufacturers such as the Dacia Spring. Although the environmental bonus is based on an environmental criterion that conditions public aid, it does not constitute a customs barrier per se. However, its effects on imports could raise compliance concerns with the WTO. Indeed, environmental criterion may have discriminatory effects on imports, which could be problematic regarding the GATT's non-discrimination rules (Art. I and III) and the Agreement on Subsidies and Countervailing Measures. The measure could be justified under the general exceptions (Art. XX), which allow states to deviate from GATT rules for the protection of the environment or health. This would require demonstrating a link between the measure and the objective pursued, its necessity and proportionality, and the absence of a disguised restriction on trade.

Integrating Circularity Criteria

Public procurement can strengthen synergies between ecological emergency and industrial sovereignty objectives by playing a leading role in structuring pilot markets ("lead markets") focused on more sustainable materials and more repairable products. Metals such as steel and aluminium, essential in many sectors (automotive, construction, electronics), present crucial challenges in terms of ecological transition as well as external dependence.

The integration of stricter environmental criteria, such as recycled material content or the production process carbon footprint could stimulate demand for low-carbon materials, such as green steel, without significantly impacting the final price: according to Strategic Perspectives (2025), the exclusive use of decarbonized steel would increase the retail price of a car by less than 1%.

Similarly, reparability requirements, in particular for critical components such as batteries, are not just about ecological imperatives; they also represent a lever to reduce dependence on extra-EU supply chains. The upcoming EU Circular Economy Act and the future Ecodesign for Sustainable Products Regulation illustrate this willingness to make sustainability a central criterion, particularly in public procurement. Public procurement can thus help create credible and stable demand for these sectors, a necessary condition for their development provided that supply can keep up.

Therefore, it is not about imposing strict environmental or reparability criteria in all public markets today, as automotive sectors are not yet ready. These criteria should rather be seen as projection tools, levers to provide economic actors with better visibility to guide investment choices, and prepare for scaling up. They require regulatory stability. Set within a clear trajectory over a 3- to 5-year horizon, or even 10 years, they can help consolidate production capacities for low-carbon steel and repairable batteries made in the EU, structure better controlled supply chains, and guide technological choices of manufacturers and subcontractors.

Discussing Local Content Criteria

It also appears important to consider the localisation of EVs production within the EU, in line with the "Made in Europe" vision announced by Ursula von der Leyen in her State to the Union on September 10, 2025. This relocation is necessary, not only to preserve jobs and strengthen political consensus around the transition, but also because excessive dependency of the electric automotive industry on external markets stands as risky to the strategic autonomy of the 27 Member States. On this point, ecological criteria are necessary but not enough. For instance, the French eco-score only stimulates the sector relocation, since the Chinese energy mix is more carbon-intensive than the European mix—for which there is no distinction between Member States (see Box 4). An improvement in Chinese production would be enough to make vehicles produced in China competitive again^[6], without any guarantee of global environmental gains, as China could simply direct its most virtuous production towards Europe without improving the rest of its production.

In this regard, public procurement can help by adding local content criteria to the ecological criteria discussed above. These tools have been barely used in Europe over the past fifteen years, partly due to the commitments made by the EU under the Agreement on Government Agreement (GPA): the EU accounts for less than 1% of local content policies worldwide across all sectors between 2009 and 2024.

Local content criteria have already been used in Europe to support automotive production in Member States, for instance in response to Japanese competition in the 1980s, which can be compared in several respects to the current "Chinese challenge". At the time, the challenge was met with temporary but strict measures such as import quotas for Japanese-made cars or the requirement for Japanese assembly plants in Europe to achieve 80% local content for their production to be recognized as European-made. These measures placed Japanese manufacturers on an equal footing with European car factories, without major disruption for European equipment manufacturers, who caught up with their Japanese competitors (Pardi et al., 2025).

In this regard, the GERPISA automotive industry research group proposes establishing a rule whereby at least 80% of the value of materials used for passenger cars and light vehicles must come from EU-sourced materials, and 50% for batteries, in line with the 2030 target set by the European Commission and considering the delay in the sector (Pardi et al., 2025). The European think tank Strategic Perspectives estimates that if a 50% local value criterion for batteries and vehicles was applied to all EVs purchased through public procurement or by households benefiting from a public bonus, the gross added value of EVs manufacturing in Europe would increase by €40.4 billion and 450,000 jobs would be created in the EU by 2035 (Strategic Perspectives, 2025a).

The introduction of local content criteria in European economic policies must consider at least two challenges.

The first one is economic: how adjusting supply and demand? The goal is to estimate the potential temporary additional costs and benefits for the EU of European production^[7]. To limit the short-term inflationary effect, it seems essential to anticipate the gradual nature of the criteria. The required local content can increase as production capacities on European soil grow, to avoid excessive price pressures while sending a clear signal to investors that this is set to increase.

The second challenge is compliance with international legal framework. Local preference measures are generally incompatible with the treaties binding the European Union to its trading partners, but there are exceptions, particularly regarding public procurement (see Strategic Perspectives, 2025b). It is already possible to design public markets favouring local producers (for finished products), provided that equivalent treatment is reserved for producers from countries that are members of the GPA as well as countries with which the EU has signed free trade agreements containing public procurement commitments. More interestingly in our case, WTO jurisprudence seems to tolerate specific rules of origin for public procurement defining the locality of a product according to a minimum share of inputs. "Public interest exceptions" can also justify, under the GATT, protective measures such as local content policies if they are linked to national security, environmental protection, or health. The electric automotive industry can be considered a strategic sector for the EU's energy independence in addition to being a climate policy, and the EU could invoke such arguments (as the United States has already done with the IRA) in the event of disputes.

The introduction of European preference criteria in public procurement appears to be the least risky option under current treaties, while offering the highest potential. It could constitute a first step before considering an extension to other instruments. Furthermore, while the WTO remains a pillar of global trade organization, increasing geopolitical tensions and the urgency of climate action require the European Union to be more creative and assertive in its approach to international trade (Dupré and Péron, 2025).

^[7] Including those that are not directly estimated by prices, such as resilience, reduction in external dependencies, etc.

Leveraging Public Procurement to Drive the Automotive Transition

In this section, we propose multiple of measures to establish an industrial policy that delivers on its commitments, moving away from the current inconsistencies and abandonments of the European Green Deal. To achieve this, we must move beyond short-term logic and embed public procurement within broader industrial planning, aligned with policies supporting innovation, relocation, and decarbonisation.

Our proposals are structured around three key pillars:

- Integrate the previously discussed criteria into public procurement and raise electrification targets for public fleets to 100% of renewals, transforming this latter into a genuine tool for long-term industrial policy.
- Widespread environmental and social criteria across all policies supporting demand for EVs, while linking this to the expansion of social leasing.
- Anchor this social and industrial project in a platform bringing together each stakeholder: public authorities, major private buyers, manufacturers, suppliers, and civil society.

Raising Electrification Targets for Public Fleets to 100% of Renewals, Backed by Environmental and Social Criteria

The Clean Vehicles Directive already requires Member States to include a significant share of low-emission vehicles in their annual fleet renewals. However, these targets are not particularly ambitious (a maximum of 38.5%), and the text lacks mechanisms to prioritise fuel-efficient vehicles manufactured in Europe.

With the Directive set for reassessment in 2026, along with the ongoing revision of public procurement directives, public procurement can become a cornerstone of industrial strategy. Early feedback from Member States to the European Commission suggests that these quotas are easily met, indicating that a higher target is achievable. The goal could be set at 100% for light personal vehicles (excluding specialised vehicles) as industrial capacities for low-emission vehicles meeting environmental and social criteria expand. This would secure nearly 200,000 vehicles per year for the sector, based on the environmental criteria outlined above: minimum carbon content, maximum circularity weight and size limitations for everyday use.

At the EU level, 200,000 units remain modest when distributed among producing countries. The proposed approach therefore involves on one hand to concentrate orders on a limited number of compact models, ensuring sufficient leverage to guide manufacturers toward targeted product development. On the other hand, to combine private demand potential with public procurement.

The criteria should adhere to the following principles:

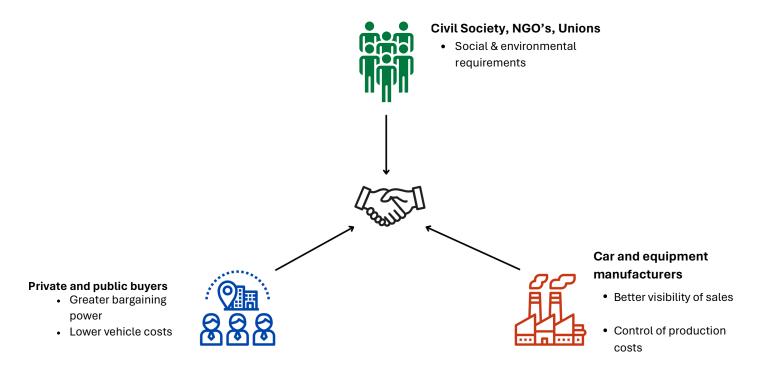
- A minimum carbon content based on a harmonised eco-score inspired by the French environmental score.
- Maximum circularity (steel, batteries, plastics).
- **Reduced dimensions** (from intermediate light vehicles to the B-segment), with adapted battery capacity and minimal embedded technology to limit the use of rare resources and control costs.
- A consensus on a minimum "Made in EU" content to support European factories engaged in the transition, with adjustments based on production capacities.

Aligning All Public Instruments with Sufficiency and Industrial Reorientation Criteria

Criteria defined within public procurement policies—regarding size, weight, price, and environmental impact—could serve as a common framework for other public intervention tools. Production subsidies, tax incentives, and electrification requirements for corporate and rental fleets would all benefit from converging toward explicit goals of sufficiency and industrial transformation. By acting as a pioneering market, public procurement can initiate the scaling up of specific models—small, lightweight, affordable EVs designed for recyclability—before private demand takes over, supported by consistent incentives.

Currently, the main subsidy for new EVs purchase in France is already tied to environmental requirements (eco-score): near-zero emissions in use and partially localised production through an environmental score that de facto disadvantages vehicles produced in China. However, several limitations persist. Weight threshold set at 2.4 tonnes for passenger vehicles leaves ample room for the heaviest and least efficient models, including some electric SUVs. The bonus is eligible for vehicles costing less than €47,000, meaning it primarily benefits wealthier households—the only ones currently able to afford new vehicles—even though the bonus is income-modulated. Subsidising new purchases in this way is a dead end. Additionally, no support is provided for second-hand vehicles, despite their role as the main pathway to EVs access for most low- and middle-income households and their importance in the broader adoption of electric mobility (Chassang, 2025).

Better alignment of purchase incentives with sufficiency objectives would make public action more coherent and effective. Combined with exemplary public procurement, such a framework could steer the entire market toward a genuinely accessible, sustainable electric mobility offer, compatible with the development trajectory of the European electric automotive industry.


Expanding Social Leasing

Several proposals are currently under discussion in France and Europe to support access to EVs, particularly through social leasing schemes or affordable lease-to-own programmes (Transport & Environment, 2025; IDDRI and T&E, 2023). These initiatives present a strategic opportunity to shift production toward more sustainable segments: small, lightweight, affordable vehicles suited to majority use cases.

These policies can be costly for public finances, making it even more important to define rigorous and transition-aligned implementation methods. Public oversight—rather than systematic reliance on banks or leasing companies—would allow for precise conditionality of aid, maximising its social and industrial impact. By supporting the production of truly affordable vehicles, these schemes could reduce long-term public spending while generating positive macroeconomic effects. According to a joint study by the FNH^[8] and IMT-IDDRI (2024), relocating the production of small city cars to France could preserve or even create jobs while consolidating an industrial sector aligned with sufficiency goals—without compromising competitiveness, as the study estimates only a 6% cost differential compared to Chinese production. This calls for greater coordination among public and private buyers and manufacturers.

^[8] Fondation pour la Nature et l'Homme.

European strategic purchasing platform to rethink methods and scale up

Maximising the levers discussed earlier would require the European Union to initiate a large-scale joint purchasing platform for EVs, mobilising not only Member States but also major companies subject to fleet renewal obligations. By bringing together manufacturers, suppliers, public and private buyers, trade unions, independent experts, NGOs, and customers representatives of users and territories, such an initiative would help structure a strong market for the most efficient vehicles while securing the volumes needed to sustain a lasting industrial dynamic.

This project could be linked to an Important Project of Common European Interest (IPCEI) dedicated to developing new vehicles—small models, family cars, light commercial vehicles, shared vehicles, and intermediate light vehicles—designed and produced in Europe. Given the European countries currently producing EVs and thus having a direct interest in developing this sector, this IPCEI could have a broad reach (Figure 2a) and initially be structured by countries already equipped with production lines suitable for A and B category vehicles (Figure 2b). It could also build on the existing IPCEI for batteries to integrate the entire value chain.

However, beyond these instruments, such a programme also requires a change in methodology, drawing inspiration from the automotive industry's best practices. The example of Toyota in Onnaing, often cited by French industrial leaders, illustrates two essential levers for sustainable performance: long-term commitment to a site without constant competitive bidding and stable supplier relationships, which encourage investment, incremental innovation, and trust throughout the supply chain. This model achieves continuous productivity gains not through short-term pressure but by securing volumes and jobs.

In contrast, the logic of constant competition between industrial sites, prevalent in the European industry for decades, has gradually weakened local ecosystems: underutilised capacities, hiring freezes, ageing workforces, and underinvestment by suppliers. The additional production costs that justify offshoring often result from this very instability. Electrification presents a historic opportunity to break away from these practices by establishing long-term mutual commitments.

Clear Advantages for All Stakeholders

For public buyers, pooling orders offers several strategic advantages. Firstly, it strengthens their bargaining power with suppliers by allowing them to act as a monopsony—a single or dominant buyer in an emerging market segment. This helps to establish common criteria for emissions, repairability and recycled content, and contributes to the harmonisation of standards across Europe, thereby strengthening the internal market.

This standardisation is all the more virtuous in that it reduces transaction costs for all players and enables manufacturers to reach significant volumes more quickly. In an industry like the automotive sector, where economies of scale are crucial, this knock-on effect lowers unit costs, speeds up the technological transition and promotes greater equity between Member States, particularly those with unequal budgetary margins.

For major private buyers (rental and leasing companies, large corporations, etc.), joining this platform offers real economic benefits. They could take advantage of the cost savings from grouped and standardised demand and benefit from the multi-year visibility provided by the platform. This joint purchasing platform could thus serve as a public measure to assist companies in their transition, complementing increasing obligations to green their fleets.

In the long term, if the concept proves successful, we can envision opening this common platform to households through a specific scheme, similar to the savings plan proposed by Chassang (2025). In a note from the Conseil d'Analyse Économique, he suggests establishing a dedicated savings plan for EVs, where the future buyer commits to replacing their combustion vehicle with an electric one within a few months or years, with a 3% return rate. The funds collected through this scheme would be directed toward developing the sector.

Beyond the operational cost savings of an EV—estimated at one-third the cost of a combustion vehicle—the IDDRI and T&E (2023) estimate that a 30% reduction in the unit price of certain compact electric models is achievable, provided three leviers are activated through a joint purchasing platform^[9]:

- Focusing models on essentials: By simplifying equipment to offer a minimalist version (level "E0"), tailored to daily use, manufacturers can reduce costs by around 10% without compromising quality or safety.
- **Reducing commercial costs:** By relying on a semi-captive market, eliminating advertising expenses, and rationalising distribution channels, a 10% discount on the catalogue price can be achieved^[10].
- Leveraging economies of scale: With increasing volumes, standardisation, and expected productivity gains on electric platforms, an additional 10% reduction is attainable in the short to medium term.

Manufacturers' margins will also need to be negotiated.

For manufacturers and the automotive sector, establishing a joint purchasing mechanism provides visibility and stability. Based on multi-year order commitments, this platform would offer a clear outlook on future demand, reinforcing the credibility of investments required for the design, industrialisation, and distribution of these lightweight and efficient vehicles. It also creates a direct incentive to align production plans with European decarbonisation goals, facilitating the achievement of sales thresholds for low-emission models.

But Success conditions are challenging

In summary, this initiative would reduce uncertainties, secure markets, and create the conditions for industrial development consistent with the EU's climate and social ambitions. However, implementing a joint purchasing platform for lightweight and efficient vehicles is demanding and requires rigorous governance.

First condition for success: A high degree of coordination among public buyers, particularly in defining technical, environmental, and performance criteria. Without harmonisation, the collective leverage effect is diluted, and the market signal remains too vague to stimulate investment. While not all Member States need to participate, a minimum level of coordination among key buyers is essential.

Second condition for success: Protecting platform's governance from capture by certain industrial interests that might seek to influence specifications based on their own constraints or even lock up the market. This requires heightened vigilance in designing specifications and establishing open governance with counterbalancing powers.

^[9] The study is based on a contract between the French government and manufacturers within the framework of social leasing, but the discussion can be extended to the European level.

^[10] In France alone, the automotive industry spends between €3 billion and €5 billion on advertising, according to Léo Larivière (2025): Quand la publicité s'oppose à la transition écologique : immersion dans l'univers des marques automobiles, published by Éditions de l'Aube.

Third condition for success: Carefully calibrating the level of competition. Too little competition—due to a lack of capable players—could lead to excessive prices, undermining the economic advantage of pooled public procurement. Conversely, excessive price pressure could compromise project profitability for manufacturers, discourage their engagement, or even hinder investments needed for upgrading, sustainability, or relocating production.

It is therefore essential to collectively define upfront the types of vehicles targeted—their uses, expected performance, and durability—to align public demand expectations with industrial investment trajectories. To ensure the robustness and legitimacy of this process, it is also crucial to involve independent experts capable of validating the feasibility and costs of manufacturers' proposals, as well as civil society (NGOs, think tanks, unions), whose participation will enhance transparency and the public interest of the scheme.

Joint procurement has already been tested in the EU, primarily in crisis conditions (vaccines, gas, and more recently armaments—see box 5), where the tool was designed to address emergencies. However, these properties can also be valuable within a coherent industrial strategy that simultaneously considers supply and demand within a common framework (Bruegel, 2024). Systems must be designed in advance to be both simple enough to engage participants and intelligent enough to avoid pitfalls.

Box 5. The European Union's Joint Procurement Experiences

The European Union has already implemented joint procurement mechanisms in crisis contexts, including:

- In 2020, with the group purchase of €71 billion worth of COVID-19 vaccines (4.6 billion doses) between 2020 and 2021. The EU tailored a legal framework for this procedure due to the urgency, authorising the Commission to negotiate contracts on behalf of Member States for the first time (European Court of Auditors, 2022).
- In 2022, for gas, following Russia's invasion of Ukraine: AggregateEU platform enabled European companies to pool their gas purchases, ensuring stable supply at competitive prices and securing the EU's energy supply (European Commission, 2024).
- Following the 2022 invasion of Ukraine, the "Collaborative Procurement of Ammunition" programme, established by the European Defence Agency, brought together 18 countries (17 EU Member States and Norway) to facilitate the joint purchase of artillery shells and ammunition for Ukraine, while streamlining and accelerating tender processes (European Defence Agency, 2023).

Conclusion

We put forward in this study an ecologically, socially, and economically viable proposal by demonstrating that public procurement can be a strategic lever for both European industry and ecological transition—provided that well-defined environmental and social criteria are incorporated.

For public buyers, the economic benefit is threefold. Firstly, fleet electrification guarantees savings since EVs are cheaper to operate than their combustion equivalents. Secondly, the development of lightweight, efficient EVs tailored to everyday use is inherently less costly than higher-end models, even when produced in Europe. Finally, contracting through a joint purchasing platform between public buyers and manufacturers opens the door to additional savings by reducing the unit cost of each vehicle.

It is therefore possible to envision strategic public procurement that strengthens European productive apparatus, advances ecological transition, the whole at a lower cost to public finances. The challenge, as important as European industrial policy itself, remains one of governance, implementation, and maintaining environmental objectives, including the ban on the sale of new petrol and diesel cars by 2035.

References

ACEA. (2024a): Fact sheet – EU battery supply chain and import reliance. Association des constructeurs européens d'automobiles.

ACEA. (2024b): The automobile industry – Pocket Guide 2024–2025.

European Defense Agency (EDA) (2023): EDA brings together 18 countries for common procurement of ammunition.

Alochet, M., Jullien, B., Klebaner, S., & Pardi, T. (2024) : Légère et abordable : les clés d'une voiture électrique à succès. La fabrique de l'industrie et Gerpisa

Bruegel. (2024): A joint public procurement tool for EU industrial policy.

Bruegel. (2024): European Union public procurement reform: A difficult but essential balancing act.

Carbone 4 (2025): Misconceptions about electric vehicles

CEPII. (2023): Réduire l'empreinte carbone des batteries: un défi stratégique pour l'Europe. Blog du CEPII.

Chassang, S (2025): «The Overlooked Bargain at EVs Adoption Policy», Note du Conseil d'analyse économique, n°85, juillet.

European Commission. (2023): Access to public procurement - Single Markert Scoreboard

European Commission. (s.d.): Public procurement portal

European Commission. (2024): AggregateEU - Questions and Answers. EU Energy Platform (archived version).

European Commission. (2025): Public Procurement Data Space. As of the 18th of June 2025

European Court of Auditors (2022): <u>UE COVID-19 vaccine procurement: Sufficient doses secured after initial challenges, but performance of the process not sufficiently assessed.</u> Publication Office of the European Union

European Court of Auditors (2023a): <u>Public procurement in the EU: Less competition for contracts awarded by certain EU agencies.</u>

European Court of Auditors (2023b): <u>Special report 15/2023: The EU's industrial policy on batteries – New strategic impetus needed</u>

Desrieux Claudine et Parra-Ramirez Kevin (2021) : « <u>La commande publique peut-elle constituer un levier de relocalisation de l'activité ?</u> », Focus du CAE, n°058-2021, avril

Draghi Mario (2024): « The Future of European competitiveness », Report for the European Commission

European Environment Agency. (2024): <u>Sustainability of Europe's mobility systems (Web report no. 01/2024)</u>. As of the 18th of June 2025

European Parliament. (2023): CO2 emissions from cars: facts and figures

EV Volumes (2025): Final May 2025 BEV, PHEV & FCEV Sales

Fondation pour la Nature et l'Homme et Institut des mobilités en transition (2024) : <u>Produire les citadines électriques en France.</u>

Guillou S., G'sell F. et Lechevalier F. (2024) : <u>Buy European Tech Act : les marchés publics de services numériques</u> doivent-ils privilégier les soumissionnaires européens ?, Sciences Po, Paris.

IDDRI and T&E (2023): <u>Social leasing: proposals for an innovative and ecological social and industrial mechanism</u>, Briefing May 2023.

Kraftfahrt-Bundesamt (KBA). (2024): Jahresbilanz der Neuzulassungen 2023.

Letta, E. (2024): "Much More Than a Market-Speed, Security, Solidarity: Empowering the Single Market to deliver a sustainable future and prosperity for all EU Citizens". Report for the European Commission

Ministère de la Transition écologique. (2024) : <u>Immatriculations des voitures particulières en 2023 : rebond dans le neuf, mais un marché de l'occasion en baisse.</u>

Ministro per la Pubblica Amministrazione. (2024) : <u>Censimento auto di servizio 2023 : stabile il numero per amministrazione.</u>

Pardi, T., Alochet, M., Jullien, B., & Kuyo, A. (2025): <u>Made in Europe. Local Content Policy for the European Automotive Industry</u>. Actes du GERPISA, 44.

Philibert C. (2024): Pourquoi la voiture électrique est bonne pour le climat, Les petits matins et Institut Veblen, Paris Strategic Perspectives. (2025). <u>Lead Markets: Driving Net-Zero Industries Made in Europe</u>, Brussels

Strategic Perspectives (2025) "The case for European preference in strategic sectors", Brussels https://strategicperspectives.eu/the-case-for-european-preference-in-strategic-sectors/

Transport & Environment. (2021). <u>Recharge EU: How many charge points will Europe and its Member States need in the 2020s</u>.

Transport & Environment (2025) Social leasing: how low-price EVs can help transport vulnerable drivers, report

Transport & Environment France. (2025). Quel avenir fiscal pour le score environnemental (éco-score)